BiOCI: preparation and applications in photocatalytic degradation of phenol.

Carolina F. Torres (PG),^{1,*} <u>Marina M. Leite</u> (PG),^{1,**} Flávio M. Vichi (PQ),¹ Renato S. Freire (PQ).¹ ¹Universidade de São Paulo.

*carol_ft@iq.usp.br; ** marina.leite@usp.br

Key words: BiOCI, X-ray diffraction, hydrothermal synthesis, UV irradiation, photocatalysis.

Abstract

Crystal structure of BiOCI obtained by different methods was studied by XRD. BiOCI exhibited higher photocatalytic activity than TiO_2 -P25.

Introdução

The study of heterogeneous photocatalysis is an important issue due to its potential applications in environmental pollution purification and energy conversion.¹

The photocatlytic activity is related to the crystallinity, size and morphology properties. Moreover, these parameters depend on the preparation method.² Recently, bismuth oxychloride (BiOCI), as an important V–VI–VII ternary compound, is known to have a layer structure characterized by $[Bi_2O_2]$ slabs interleaved with double slabs of Cl atoms in the tetragonal matlockite structure, which can promote the efficient separation of photoinduced electron–hole pairs.³

Here, we describe a very simple method for BiOCI preparation based on chemical precipitation in aqueous solution (p-BOC). L-arginine was used as structure-directing agent, $Bi(NO_3)_3$ and HCI were used as precursor compounds. This reaction mixture was treated by different processes: UV irradiation (UV-BOC), hydrothermal method (H-BOC) and both in two different pH (UV-BOC-H-pH). The structural properties of the obtained materials were characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy and BET surface area.

Degradation of solution of phenol and rhodamine-B was used as probe to evaluate the photocatalytic activity of the as-synthesized BiOCI samples.

Resultados e Discussão

Fig. 1 shows the XRD patterns of the as-prepared BiOCI. The main diffraction peaks were identical to those of tetragonal BiOCI (JCPDS 01-085-0861). The difference in the relative intensity of the diffraction peaks indicates that the UV irradiation and hydrothermal process induce the preferential growth of different facets, especially in the [001] direction and the (110) and (102) planes.

Fig. 2 shows the results of the photocatalysis of phenol by as-prepared BiOCI under 30 min of UV irradiation. Degradation data was determined by phenol concentration and mineralization by the total , UV irradiation, photocatalysis. organic carbon present in the solutions. All of the BiOCI samples showed high photocalytic efficiency in both the degradation and mineralization of phenol.

Conclusões

BiOCI was produced by different synthetic pathways, which led to different crystal characterists and photocatalytic efficiencies. Moreover, BiOCI showed better catalytic perfomance than TiO_2 -P25.

Agradecimentos

CAPES, CNPq.

total ¹J. Li, Y. Yuab and L. Zhang. *Nanoscale* **2014**, *6*, 8473.

39ª Reunião Anual da Sociedade Brasileira de Química: Criar e Empreender

- ² J. Xie, Y. Cao, D. Jia, H. Qin, Z. Liang *Cat. Comm* 2015, *69*, *34*.
 ³ L. Chen, Y. Shuang-Feng et al. *Inorg. Chem.* 2013, *52*, *1111*